Socio-spatial Self-organizing Maps
نویسندگان
چکیده
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Self-Organizing Visual Maps
This paper deals with automatically learning the spatial distribution of a set of measurements: images, in the examples presented here. The solution to this problem can be viewed as an instance of robot mapping although it can also be used in other contexts. We examine the problem of organizing an ensemble of images of an environment in terms of the positions from which the images were obtained...
متن کاملSelf-organizing Maps
A topographic map is a two-dimensional, nonlinear approximation of a potentially high-dimensional data manifold, which makes it an appealing instrument for visualizing and exploring high-dimensional data. The Self-Organizing Map (SOM) is the most widely used algorithm, and it has led to thousands of applications in very diverse areas. In this chapter, we will introduce the SOM algorithm, discus...
متن کاملAligned Self-Organizing Maps
− The concept of similarity is important for many data mining related applications such as content-based music retrieval. Defining similarity can be very difficult if several aspects are involved. For example, music similarity depends on the melody, rhythm, or instruments. The Self-Organizing Map is a powerful tool to visualize how the data looks like from a certain perspective of similarity. I...
متن کاملRobust Self-organizing Maps
The Self Organizing Map (SOM) model is an unsupervised learning neural network that has been successfully applied as a data mining tool. The advantages of the SOMs are that they preserve the topology of the data space, they project high dimensional data to a lower dimension representation scheme, and are able to find similarities in the data. However, the learning algorithm of the SOM is sensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ACM on Human-Computer Interaction
سال: 2018
ISSN: 2573-0142
DOI: 10.1145/3274414